Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Psychiatry ; 28(9): 3994-4010, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37833406

RESUMO

The pathogenesis of schizophrenia is believed to involve combined dysfunctions of many proteins including microtubule-associated protein 6 (MAP6) and Kv3.1 voltage-gated K+ (Kv) channel, but their relationship and functions in behavioral regulation are often not known. Here we report that MAP6 stabilizes Kv3.1 channels in parvalbumin-positive (PV+ ) fast-spiking GABAergic interneurons, regulating behavior. MAP6-/- and Kv3.1-/- mice display similar hyperactivity and avoidance reduction. Their proteins colocalize in PV+ interneurons and MAP6 deletion markedly reduces Kv3.1 protein level. We further show that two microtubule-binding modules of MAP6 bind the Kv3.1 tetramerization domain with high affinity, maintaining the channel level in both neuronal soma and axons. MAP6 knockdown by AAV-shRNA in the amygdala or the hippocampus reduces avoidance or causes hyperactivity and recognition memory deficit, respectively, through elevating projection neuron activity. Finally, knocking down Kv3.1 or disrupting the MAP6-Kv3.1 binding in these brain regions causes avoidance reduction and hyperactivity, consistent with the effects of MAP6 knockdown. Thus, disrupting this conserved cytoskeleton-membrane interaction in fast-spiking neurons causes different degrees of functional vulnerability in various neural circuits.


Assuntos
Neurônios , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Camundongos , Animais , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/farmacologia , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Emoções , Canais de Potássio Shaw/metabolismo
2.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36512346

RESUMO

The detyrosination/tyrosination cycle of α-tubulin is critical for proper cell functioning. VASH1-SVBP and VASH2-SVBP are ubiquitous enzymes involved in microtubule detyrosination, whose mode of action is little known. Here, we show in reconstituted systems and cells that VASH1-SVBP and VASH2-SVBP drive the global and local detyrosination of microtubules, respectively. We solved the cryo-electron microscopy structure of VASH2-SVBP bound to microtubules, revealing a different microtubule-binding configuration of its central catalytic region compared to VASH1-SVBP. We show that the divergent mode of detyrosination between the two enzymes is correlated with the microtubule-binding properties of their disordered N- and C-terminal regions. Specifically, the N-terminal region is responsible for a significantly longer residence time of VASH2-SVBP on microtubules compared to VASH1-SVBP. We suggest that this VASH region is critical for microtubule detachment and diffusion of VASH-SVBP enzymes on lattices. Our results suggest a mechanism by which VASH1-SVBP and VASH2-SVBP could generate distinct microtubule subpopulations and confined areas of detyrosinated lattices to drive various microtubule-based cellular functions.


Assuntos
Proteínas Angiogênicas , Proteínas de Transporte , Proteínas de Ciclo Celular , Microtúbulos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Proteínas Angiogênicas/metabolismo
3.
Brain ; 145(7): 2486-2506, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35148384

RESUMO

Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer's disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-ß peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-ß peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-ß peptide-induced synaptic damage and that this balance is lost in Alzheimer's disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Tubulina (Proteína) , Doença de Alzheimer/metabolismo , Animais , Humanos , Camundongos , Microtúbulos , Peptídeos/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
4.
Elife ; 102021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860155

RESUMO

Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-associated protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the collapsin response mediator protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within detergent-resistant membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.


Assuntos
Fórnice/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Semaforinas/genética , Transdução de Sinais , Animais , Feminino , Fórnice/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Semaforinas/metabolismo
5.
Front Mol Neurosci ; 14: 665693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025352

RESUMO

The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs-including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);-were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6's effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.

6.
Dev Neurobiol ; 81(3): 253-272, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33325152

RESUMO

Microtubules (MTs) are an essential component of the neuronal cytoskeleton; they are involved in various aspects of neuron development, maintenance, and functions including polarization, synaptic plasticity, and transport. Neuronal MTs are highly heterogeneous due to the presence of multiple tubulin isotypes and extensive post-translational modifications (PTMs). These PTMs-most notably detyrosination, acetylation, and polyglutamylation-have emerged as important regulators of the neuronal microtubule cytoskeleton. With this review, we summarize what is currently known about the impact of tubulin PTMs on microtubule dynamics, neuronal differentiation, plasticity, and transport as well as on brain function in normal and pathological conditions, in particular during neuro-degeneration. The main therapeutic approaches to neuro-diseases based on the modulation of tubulin PTMs are also summarized. Overall, the review indicates how tubulin PTMs can generate a large number of functionally specialized microtubule sub-networks, each of which is crucial to specific neuronal features.


Assuntos
Microtúbulos , Tubulina (Proteína) , Acetilação , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
7.
Sci Adv ; 6(14): eaaz4344, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270043

RESUMO

Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work. Here, we show that MAP6, previously known to confer cold stability to microtubules, promotes growth. More unexpectedly, MAP6 localizes in the lumen of microtubules, induces the microtubules to coil into a left-handed helix, and forms apertures in the lattice, likely to relieve mechanical stress. These features have not been seen in microtubules before and could play roles in maintaining axonal width or providing flexibility in the face of compressive forces during development.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Camundongos , Microtúbulos/metabolismo , Modelos Biológicos , Neuritos , Neurônios/ultraestrutura , Ligação Proteica , Transporte Proteico
8.
Hum Mol Genet ; 28(20): 3391-3405, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31363758

RESUMO

Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.


Assuntos
Encéfalo/anormalidades , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Proteínas de Transporte/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Feminino , Humanos , Immunoblotting , Imageamento por Ressonância Magnética , Camundongos , Microcefalia/genética , Microcefalia/metabolismo , Tirosina/metabolismo
9.
Nat Struct Mol Biol ; 26(7): 571-582, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235911

RESUMO

Vasohibins are tubulin tyrosine carboxypeptidases that are important in neuron physiology. We examined the crystal structures of human vasohibin 1 and 2 in complex with small vasohibin-binding protein (SVBP) in the absence and presence of different inhibitors and a C-terminal α-tubulin peptide. In combination with functional data, we propose that SVBP acts as an activator of vasohibins. An extended groove and a distinctive surface residue patch of vasohibins define the specific determinants for recognizing and cleaving the C-terminal tyrosine of α-tubulin and for binding microtubules, respectively. The vasohibin-SVBP interaction and the ability of the enzyme complex to associate with microtubules regulate axon specification of neurons. Our results define the structural basis of tubulin detyrosination by vasohibins and show the relevance of this process for neuronal development. Our findings offer a unique platform for developing drugs against human conditions with abnormal tubulin tyrosination levels, such as cancer, heart defects and possibly brain disorders.


Assuntos
Proteínas Angiogênicas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Angiogênicas/química , Animais , Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , Células Cultivadas , Cristalografia por Raios X , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Mapas de Interação de Proteínas , Tubulina (Proteína)/química
10.
J Cell Sci ; 132(3)2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30635446

RESUMO

Sperm cells are highly specialized mammalian cells, and their biogenesis requires unique intracellular structures. Perturbation of spermatogenesis often leads to male infertility. Here, we assess the role of a post-translational modification of tubulin, glutamylation, in spermatogenesis. We show that mice lacking the tubulin deglutamylase CCP5 (also known as AGBL5) do not form functional sperm. In these mice, spermatids accumulate polyglutamylated tubulin, accompanied by the occurrence of disorganized microtubule arrays, in particular in the sperm manchette. Spermatids further fail to re-arrange their intracellular space and accumulate organelles and cytosol, while nuclei condense normally. Strikingly, spermatids lacking CCP5 show supernumerary centrioles, suggesting that glutamylation could control centriole duplication. We show that most of these observed defects are also present in mice in which CCP5 is deleted only in the male germ line, strongly suggesting that they are germ-cell autonomous. Our findings reveal that polyglutamylation is, beyond its known importance for sperm flagella, an essential regulator of several microtubule-based functions during spermatogenesis. This makes enzymes involved in glutamylation prime candidates for being genes involved in male sterility.


Assuntos
Carboxipeptidases/genética , Infertilidade Masculina/genética , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Espermátides/metabolismo , Espermatogênese/genética , Tubulina (Proteína)/metabolismo , Animais , Carboxipeptidases/deficiência , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Centríolos/metabolismo , Centríolos/patologia , Centríolos/ultraestrutura , Citosol/metabolismo , Citosol/ultraestrutura , Ácido Glutâmico/metabolismo , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Microtúbulos/patologia , Microtúbulos/ultraestrutura , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Espermátides/patologia , Espermátides/ultraestrutura , Tubulina (Proteína)/genética
11.
EMBO J ; 37(23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30420556

RESUMO

Posttranslational modifications of tubulin are emerging regulators of microtubule functions. We have shown earlier that upregulated polyglutamylation is linked to rapid degeneration of Purkinje cells in mice with a mutation in the deglutamylating enzyme CCP1. How polyglutamylation leads to degeneration, whether it affects multiple neuron types, or which physiological processes it regulates in healthy neurons has remained unknown. Here, we demonstrate that excessive polyglutamylation induces neurodegeneration in a cell-autonomous manner and can occur in many parts of the central nervous system. Degeneration of selected neurons in CCP1-deficient mice can be fully rescued by simultaneous knockout of the counteracting polyglutamylase TTLL1. Excessive polyglutamylation reduces the efficiency of neuronal transport in cultured hippocampal neurons, suggesting that impaired cargo transport plays an important role in the observed degenerative phenotypes. We thus establish polyglutamylation as a cell-autonomous mechanism for neurodegeneration that might be therapeutically accessible through manipulation of the enzymes that control this posttranslational modification.


Assuntos
Doenças Neurodegenerativas/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Células de Purkinje/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Transporte Biológico Ativo/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeos/genética , Células de Purkinje/patologia , Tubulina (Proteína)/genética
12.
Skelet Muscle ; 8(1): 30, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231928

RESUMO

BACKGROUND: The skeletal muscle fiber has a specific and precise intracellular organization which is at the basis of an efficient muscle contraction. Microtubules are long known to play a major role in the function and organization of many cells, but in skeletal muscle, the contribution of the microtubule cytoskeleton to the efficiency of contraction has only recently been studied. The microtubule network is dynamic and is regulated by many microtubule-associated proteins (MAPs). In the present study, the role of the MAP6 protein in skeletal muscle organization and function has been studied using the MAP6 knockout mouse line. METHODS: The presence of MAP6 transcripts and proteins was shown in mouse muscle homogenates and primary culture using RT-PCR and western blot. The in vivo evaluation of muscle force of MAP6 knockout (KO) mice was performed on anesthetized animals using electrostimulation coupled to mechanical measurement and multimodal magnetic resonance. The impact of MAP6 deletion on microtubule organization and intracellular structures was studied using immunofluorescent labeling and electron microscopy, and on calcium release for muscle contraction using Fluo-4 calcium imaging on cultured myotubes. Statistical analysis was performed using Student's t test or the Mann-Whitney test. RESULTS: We demonstrate the presence of MAP6 transcripts and proteins in skeletal muscle. Deletion of MAP6 results in a large number of muscle modifications: muscle weakness associated with slight muscle atrophy, alterations of microtubule network and sarcoplasmic reticulum organization, and reduction in calcium release. CONCLUSION: Altogether, our results demonstrate that MAP6 is involved in skeletal muscle function. Its deletion results in alterations in skeletal muscle contraction which contribute to the global deleterious phenotype of the MAP6 KO mice. As MAP6 KO mouse line is a model for schizophrenia, our work points to a possible muscle weakness associated to some forms of schizophrenia.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Fibras Musculares Esqueléticas/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Retículo Sarcoplasmático/metabolismo
13.
Nat Commun ; 9(1): 3775, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224655

RESUMO

Emerging evidence indicates that microtubule-associated proteins (MAPs) are implicated in synaptic function; in particular, mice deficient for MAP6 exhibit striking deficits in plasticity and cognition. How MAP6 connects to plasticity mechanisms is unclear. Here, we address the possible role of this protein in dendritic spines. We find that in MAP6-deficient cortical and hippocampal neurons, maintenance of mature spines is impaired, and can be restored by expressing a stretch of the MAP6 sequence called Mc modules. Mc modules directly bind actin filaments and mediate activity-dependent stabilisation of F-actin in dendritic spines, a key event of synaptic plasticity. In vitro, Mc modules enhance actin filament nucleation and promote the formation of stable, highly ordered filament bundles. Activity-induced phosphorylation of MAP6 likely controls its transfer to the spine cytoskeleton. These results provide a molecular explanation for the role of MAP6 in cognition, enlightening the connection between cytoskeletal dysfunction, synaptic impairment and neuropsychiatric illnesses.


Assuntos
Citoesqueleto de Actina/metabolismo , Dendritos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Hipocampo/citologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Neurônios/metabolismo , Fosforilação , Fotodegradação
14.
J Cell Biol ; 217(5): 1719-1738, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29535193

RESUMO

During neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered. Using loss- and gain-of-function analyses during zebrafish development, we identify in this study the meiotic clade adenosine triphosphatase Fidgetin-like 1 (Fignl1) as a key GC-enriched MT-interacting protein in motor circuit wiring and larval locomotion. We show that Fignl1 controls GC morphology and behavior at intermediate targets by regulating MT plus end dynamics and growth directionality. We further reveal that alternative translation of Fignl1 transcript is a sophisticated mechanism modulating MT dynamics: a full-length isoform regulates MT plus end-tracking protein binding at plus ends, whereas shorter isoforms promote their depolymerization beneath the cell cortex. Our study thus pinpoints Fignl1 as a multifaceted key player in MT remodeling underlying motor circuit connectivity.


Assuntos
Adenosina Trifosfatases/metabolismo , Orientação de Axônios , Axônios/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/química , Animais , Citoesqueleto/metabolismo , Técnicas de Silenciamento de Genes , Cones de Crescimento/metabolismo , Humanos , Larva/metabolismo , Locomoção , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios Motores/metabolismo , Proteínas Nucleares/química , Polimerização , Isoformas de Proteínas/metabolismo , Medula Espinal/metabolismo
15.
Sci Rep ; 8(1): 4679, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535400

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

16.
Sci Rep ; 8(1): 3072, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449678

RESUMO

The cerebellum plays a key role in motor tasks, but its involvement in cognition is still being considered. Although there is an association of different psychiatric and cognitive disorders with cerebellar impairments, the lack of time-course studies has hindered the understanding of the involvement of cerebellum in cognitive and non-motor functions. Such association was here studied using the Purkinje Cell Degeneration mutant mouse, a model of selective and progressive cerebellar degeneration that lacks the cytosolic carboxypeptidase 1 (CCP1). The effects of the absence of this enzyme on the cerebellum of mutant mice were analyzed both in vitro and in vivo. These analyses were carried out longitudinally (throughout both the pre-neurodegenerative and neurodegenerative stages) and different motor and non-motor tests were performed. We demonstrate that the lack of CCP1 affects microtubule dynamics and flexibility, defects that contribute to the morphological alterations of the Purkinje cells (PCs), and to progressive cerebellar breakdown. Moreover, this degeneration led not only to motor defects but also to gradual cognitive impairments, directly related to the progression of cellular damage. Our findings confirm the cerebellar implication in non-motor tasks, where the formation of the healthy, typical PCs structure is necessary for normal cognitive and affective behavior.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Microtúbulos/fisiologia , Células de Purkinje/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Animais , Cerebelo/metabolismo , Cerebelo/fisiologia , Cognição/fisiologia , Transtornos Cognitivos/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Feminino , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/metabolismo , Transtornos Motores/genética , Células de Purkinje/fisiologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
17.
Sci Rep ; 8(1): 474, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323173

RESUMO

In this report, we present an improved protocol for CRISPR/Cas9 genome editing in mice. The procedure consists in the electroporation of intact mouse zygotes with ribonucleoprotein complexes prepared in vitro from recombinant Cas9 nuclease and synthetic dual guide RNA. This simple cloning-free method proves to be extremely efficient for the generation of indels and small deletions by non-homologous end joining, and for the generation of specific point mutations by homology-directed repair. The procedure, which avoids DNA construction, in vitro transcription and oocyte microinjection, greatly simplifies genome editing in mice.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Zigoto/metabolismo , Animais , Reparo do DNA por Junção de Extremidades , Enzimas Desubiquitinantes , Eletroporação , Endopeptidases/química , Endopeptidases/genética , Feminino , Loci Gênicos , Técnicas de Genotipagem , Mutação INDEL , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto
18.
Mol Biol Cell ; 29(2): 154-165, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29167379

RESUMO

In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain and is modulated by its projection domain. Site-specific pseudophosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles, or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phosphodependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations that may have a deleterious impact during neurodegeneration.


Assuntos
Microtúbulos/ultraestrutura , Proteínas tau/química , Proteínas tau/ultraestrutura , Citoesqueleto de Actina/ultraestrutura , Microscopia Crioeletrônica , Humanos , Neurônios/metabolismo , Fosforilação , Ligação Proteica
20.
Eur J Neurosci ; 46(11): 2754-2767, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29094416

RESUMO

MAP6 proteins were first described as microtubule-stabilizing agents, whose properties were thought to be essential for neuronal development and maintenance of complex neuronal networks. However, deletion of all MAP6 isoforms in MAP6 KO mice does not lead to dramatic morphological aberrations of the brain but rather to alterations in multiple neurotransmissions and severe behavioural impairments. A search for protein partners of MAP6 proteins identified Tctex1 - a dynein light chain with multiple non-microtubule-related functions. The involvement of Tctex1 in calcium signalling led to investigate it in MAP6 KO neurons. In this study, we show that functional Cav 2.2/N-type calcium channels are deficient in MAP6 KO neurons, due to improper location. We also show that MAP6 proteins interact directly with both Tctex1 and the C-terminus of Cav 2.2/N-type calcium channels. A balance of these two interactions seems to be crucial for MAP6 to modulate calcium signalling in neurons.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Sinalização do Cálcio/fisiologia , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Feminino , Hipocampo/citologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...